Class AstronomicParametersTransformer

java.lang.Object
net.simplace.sim.io.FWSimIOAdapter
net.simplace.sim.io.resources.FWSimInputAdapter
net.simplace.sim.io.resources.FWSimResourceTransformer
net.simplace.sim.transformers.AstronomicParametersTransformer
All Implemented Interfaces:
net.simplace.sim.util.FWSimFieldContainer

public class AstronomicParametersTransformer extends net.simplace.sim.io.resources.FWSimResourceTransformer
WIKI_START Calculated daylength, photoperiodic daylength, solar constant and daily total effective solar height for each DOY for a set of given latitudes. == Input and output of the transformer == For each row in the resource it creates 366 rows containing values for each day of year (DOY) The transformer needs the field names of a resource, that contain - location id - latitude in decimal degrees - inclination of sun angle in decimal degrees Normally you do not enter the numeric value for latitude, but a reference to the value, i. e. the column name of the resource's column containing the latitudes. It outputs a resource with following fields - DOY (serves as a key) (INT) - location id (serves as a key, same as the key of the resource) - daylength (DOUBLE) - photoperiodic daylength (DOUBLE) - solar constant (DOUBLE) - seasonal offset of sine of solar height (DOUBLE) - amplitude of sine of solar height (DOUBLE) - daily integral of SINB over the day (DOUBLE) - daily integral of corrected SINB for lower atmospheric transmission at lower solar elevation (DOUBLE) - area under the sinBeta curve (DOUBLE) === Example === First you need a resource that has a latitude and sun inclination column. {{{ | |
| | | | | |
|
}}} Now the resource id="''locations''" has to be written into the transformers `resource` attribute. The header section contains the outputs of the tranformer. Make sure that they are in the same order as in the example. Dont't forget to add to the second element (`LocationId`) the same `key` attribute as in the resource. Finally you tell the transformer the name of the resources id field (`LocationId`) and the name of the fields that hold the latitude and sun inclination. Remember: the names have to match exactly, lower and upper case matters! {{{ | |
| | | | | | | | | |
| SunInclination | Latitude | LocationId |
}}} == Remarks == The calculation method follows mainly the routine from the Gecros model (1), see also (2) and (3): Differences between this routine and Gecros - Gecros limits the latitude between -67 and 67 degrees. This routine extends the range from -90 to 90 degrees as in Lintul5 (2) - Sine and Cosine of declination are calculated directly (in a mathematical equivalent way) - Values are calculated with double precision, which might result in slightly different values than from the FORTRAN code. == Formulas == WIKI_END Conversion factor from degrees to radians. The original Fortran/FST-Modules use a less precise approximation of \(\pi \approx 3.141592654\), whereas here \(\pi \approx 3.141592653589793\). \[ \begin{eqnarray} rad &=& \frac{\pi}{180}\\ \end{eqnarray} \] Sine and cosine of latitude, maximal declination. Values calculated only once per location. \[ \begin{eqnarray} sinlat &=& \sin(rad \cdot latitutde)\\ coslat &=& \cos(rad \cdot latitutde)\\ sindcm &=& \sin(rad \cdot 23.45)\\ \end{eqnarray} \] Sine and cosine of declination of the sun as function of day of year. Calculation is taken from Goudriaan, van Laar 1994. Some models first calculate \(dec\) as the arcsine of \(sindec\) and then take the sine and cosine. The methods are mathematically equivalent due to \(sin^2+cos^2=1\) \[ \begin{eqnarray} sindec &=& -sindcm \cos(2 \pi \frac{doy+10}{365})\\ cosdec &=& \sqrt{1-sindec^2}\\ sinld &=& sinlat \cdot sindec\\ cosld &=& coslat \cdot cosdec \end{eqnarray} \] Daylength calculation. \[ \begin{eqnarray} arg &=& \min(1,\max(-1,\frac{sinld}{cosld}))\\ daylength &=& 12 (1 + \frac{2}{\pi} \arcsin(arg))\\ \end{eqnarray} \] Photoperiodic daylength \[ \begin{eqnarray} arg2 &=& \min(1,\max(-1,\frac{-\sin(rad \cdot inclination)+sinld}{cosld}))\\ ddlp &=& 12(1+\frac{2}{\pi}\arcsin(arg2))\\ \end{eqnarray} \] Solar constant \[ \begin{eqnarray} sc &=& 1367(1 + 0.033 \cos(2 \pi\frac{doy-10}{365}))\\ \end{eqnarray} \] Daily total of effective solar height \[ \begin{eqnarray} dsinb &=& 3600(dayl \cdot sinld+24 cosld \frac{\sqrt{1-arg^2}}{\pi})\\ dsinbe &=& 3600(dayl(sinld+0.4(sinld^2+\frac{cosld^2}{2})) + 12 cosld(2+3\cdot 0.4 sinld)\frac{\sqrt{1-arg^2}}{\pi}) \end{eqnarray} \] Notice: The sine of solar height is \(sin\beta(h) = sinld + cosld \cdot \cos(2 \pi \frac{h-12}{24})\), \(dsinb\) is the integral \(\int_0^{24} sin\beta(h)dh\) converted to seconds. WIKI_START == Utilisation == Transformer is used in the FST based models: - Lintul5 - Gecros - Sucros == Notice == Transformer works only with resources that have a single column key (that identifies the location) The transformed resource has two keys: the DOY and the key from the resource. === Tweaks === Instead of transforming a resource, the transformer can get the values for latitude and inclination directly and generate day lengths etc. In order to use the transformer this way, you have to omit the resource attribute. !LatitudeField and !SunInclinationField should then reference the coresponding DOUBLE variables. {{{ | sevilla | 53.1 | -2.5 | ... | |
| | | | ... |
| vSunInclination | vLatitude | vActualLocation |
}}} '''It's recommended to use the transformer with a resource, rather than the tweaked method.''' You can't mix the two methods by taking one value from the resource and another directly. The way of configuring the tweaked method might change (especially the ids of the inputs might be renamed to distinguish them from the inputs of the standart method). == References == - (1) YIN, X. and van Laar, H. H., Crop Systems Dynamics, 2005 - (2) Wolf, J., User guide for Lintul 5, 2012 [https://models.pps.wur.nl/system/files/LINTUL5-report-vs1_0.zip] - (3) Goudriaan, Modeling Potential Crop Growth Processes, 1994, (revised version Nov. 2004) WIKI_END
Author:
Gunther Krauss, Andreas Enders
  • Nested Class Summary

    Nested classes/interfaces inherited from class net.simplace.sim.io.FWSimIOAdapter

    net.simplace.sim.io.FWSimIOAdapter.FREQUENCE
  • Field Summary

    Fields inherited from class net.simplace.sim.io.resources.FWSimResourceTransformer

    iFieldMap, iIntColumnMap, iLastInputValuesMap, iLastProjectID, iLastUniqueID, iPoolName, iSourceName

    Fields inherited from class net.simplace.sim.io.resources.FWSimInputAdapter

    iJexlScript, iShouldCacheToDB

    Fields inherited from class net.simplace.sim.io.FWSimIOAdapter

    iArrayMode, iFieldcount, iFrequence, iHeaderVariables, iInterface, iJexlRule, iKeyMap, iName, iOrderNumber, iProcessTime, iResourceElement, iSession, iSourceKey
  • Constructor Summary

    Constructors
    Constructor
    Description
    AstronomicParametersTransformer(net.simplace.sim.FWSimSession aSession, Integer aOrderNumber)
     
    AstronomicParametersTransformer(net.simplace.sim.FWSimSession aSession, org.jdom2.Element aResourceElement, Integer aOrderNumber)
     
  • Method Summary

    Modifier and Type
    Method
    Description
    net.simplace.sim.io.resources.FWSimResourceCache
    calculateDaylength(net.simplace.sim.util.FWSimVariable<String> aIdname, net.simplace.sim.util.FWSimVariable<String> aLatitudename, net.simplace.sim.util.FWSimVariable<String> aInclinationname, net.simplace.sim.io.resources.FWSimResourceCache aCache, net.simplace.sim.util.FWSimVarMap aVarMap)
    Calculates Daylengths
    HashMap<String,net.simplace.sim.util.FWSimVariable<?>>
     
    net.simplace.sim.io.resources.FWSimResourceCache
    getData(net.simplace.sim.util.FWSimVarMap aVarMap)
    standard method from outside
    net.simplace.sim.io.resources.FWSimResourceCache
    getData(net.simplace.sim.util.FWSimVarMap aVarMap, net.simplace.sim.io.resources.FWSimResourceCache aResourceCache)
    used by test cases
    void
    updateFields(net.simplace.core.FWObservable aObservable)
     

    Methods inherited from class net.simplace.sim.io.resources.FWSimResourceTransformer

    addVariable, createFormFields, createResourceTransformer, createResourceTransformer, createResourceTransformer, fillVarMap, getCreateFormXML, getEditFormXML, getSourceResourceCache, getVariable, isUpdated, toXML

    Methods inherited from class net.simplace.sim.io.resources.FWSimInputAdapter

    getContentType, getInputVariables, getJexlScript, getOutputVariables, getVarMap, isTransformer, shouldCacheToDB, toHTMLTablestring

    Methods inherited from class net.simplace.sim.io.FWSimIOAdapter

    addProcessTime, checkCondition, createFormFields, finalize, getFieldMap, getFrequence, getHeaderVariables, getHeaderXML, getInterface, getJexlRule, getKeyMap, getName, getOrderNumber, isArrayMode, isConditionCheck, removeVariable, setInterface, setOrderNumber, toString, writeHeaderList

    Methods inherited from class java.lang.Object

    clone, equals, getClass, hashCode, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • AstronomicParametersTransformer

      public AstronomicParametersTransformer(net.simplace.sim.FWSimSession aSession, org.jdom2.Element aResourceElement, Integer aOrderNumber)
      Parameters:
      aSession -
      aResourceElement -
      aOrderNumber -
    • AstronomicParametersTransformer

      public AstronomicParametersTransformer(net.simplace.sim.FWSimSession aSession, Integer aOrderNumber)
      Parameters:
      aSession -
      aOrderNumber -
  • Method Details

    • createVariables

      public HashMap<String,net.simplace.sim.util.FWSimVariable<?>> createVariables()
      Specified by:
      createVariables in interface net.simplace.sim.util.FWSimFieldContainer
      Overrides:
      createVariables in class net.simplace.sim.io.FWSimIOAdapter
    • getData

      public net.simplace.sim.io.resources.FWSimResourceCache getData(net.simplace.sim.util.FWSimVarMap aVarMap) throws net.simplace.sim.exceptions.MissingSimResourceException
      standard method from outside
      Specified by:
      getData in class net.simplace.sim.io.resources.FWSimInputAdapter
      Throws:
      net.simplace.sim.exceptions.MissingSimResourceException
      See Also:
      • FWSimInputAdapter.getData(net.simplace.sim.util.FWSimVarMap)
    • getData

      public net.simplace.sim.io.resources.FWSimResourceCache getData(net.simplace.sim.util.FWSimVarMap aVarMap, net.simplace.sim.io.resources.FWSimResourceCache aResourceCache) throws net.simplace.sim.exceptions.MissingSimResourceException
      used by test cases
      Parameters:
      aVarMap - variable map
      aResourceCache - Cached resources (soil data)
      Returns:
      delivered new data from transformer
      Throws:
      net.simplace.sim.exceptions.MissingSimResourceException
    • calculateDaylength

      public net.simplace.sim.io.resources.FWSimResourceCache calculateDaylength(net.simplace.sim.util.FWSimVariable<String> aIdname, net.simplace.sim.util.FWSimVariable<String> aLatitudename, net.simplace.sim.util.FWSimVariable<String> aInclinationname, net.simplace.sim.io.resources.FWSimResourceCache aCache, net.simplace.sim.util.FWSimVarMap aVarMap) throws net.simplace.sim.exceptions.MissingSimResourceException
      Calculates Daylengths
      Parameters:
      aIdname -
      aLatitudename -
      aInclinationname -
      idname -
      latitudename -
      inclinationname -
      aCache - original soil info stored
      aVarMap -
      Returns:
      the new created FWSimResourceCache
      Throws:
      net.simplace.sim.exceptions.MissingSimResourceException
    • updateFields

      public void updateFields(net.simplace.core.FWObservable aObservable)
      Specified by:
      updateFields in class net.simplace.sim.io.resources.FWSimResourceTransformer
      See Also:
      • FWSimResourceTransformer.updateFields(net.simplace.core.FWObservable)