Class HillFlow1DLintulCCDiurnal

java.lang.Object
net.simplace.sim.model.FWSimComponent
net.simplace.sim.components.experimental.lintulcc.HillFlow1DLintulCCDiurnal
All Implemented Interfaces:
net.simplace.sim.util.FWSimFieldContainer

public class HillFlow1DLintulCCDiurnal extends net.simplace.sim.model.FWSimComponent
Hillflow1D is a SimComponent for transient simulations of soil water balance of a multiple layer soil profile (Bronstert & Plate 1997). In contrast to other SimComponents which use a conceptual approach to calculate the soil water balance (e.g. SlimWater) in daily time steps, HIllflow1D is a physically based model where soil water fluxe4s are driven by soil water potential.

This SimComponent uses to simulate photosynthesis, stomatal conductance, water flux, and crop growth using the Couvreur RWU (Couvreur et al., 2012, 2014) model, HILLFLOW 1D water balance model (Bronstert et al., 1997), and crop growth modules from LintulCC.

This SimComponent is different from the original LintulCC simcomponent in term of:

  • the original tipping bucket water balance model and RWU model are replaced by physically based water balance HILLFLOW 1D and Couvreur RWU model
  • (Penman-Monteith evaporative demand, soil water flux, root water uptake, photosynthesis and stomatal conductance are simulated at sub-daily time step explicitly using hourly climatic input while other modeling routines (leaf, phenology, carbon partritioning, and grain growth) still run at daily time step;
  • potential evapotranspiration is calculated for whole growing season without water stress (fwat = 1). Actual hourly water stress (fwat) is updated then imposes on photosynthesis, stomatal conductance and crop growth.

The Couvreur RWU model simulates the RWU using physical analogue Ohm law equation based on simulated plant hydraulic conductance (detail equations in Chapter 3 of the LintulCC and Extensions documentation (pdf)) and water pressure head gradient from soil-root zone to leaf. Further detail information in the Couvreur RWU model and modeling coupling work could be found in Nguyen et al., 2020 and in the Chapter 4 of the LintulCC and Extensions documentation (pdf).

References

Couvreur, V., Vanderborght, J., and Javaux, M.: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach, Hydrol. Earth Syst. Sci., 16, 2957–2971, https://doi.org/10.5194/hess-16-2957-2012, 2012. 

Couvreur, V., Vanderborght, J., Beff, L., and Javaux, M.: Horizontal soil water potential heterogeneity: Simplifying approaches for crop water dynamics models, Hydrol. Earth Syst. Sci., 18, 1723–1743, https://doi.org/10.5194/hess-18-1723-2014, 2014. 

Nguyen, T. H., Langensiepen, M., Vanderborght, J., Hüging, H., Mboh, C. M., and Ewert, F.: Comparison of root water uptake models in simulating CO2 and H2O fluxes and growth of wheat, Hydrol. Earth Syst. Sci., 24, 4943–4969, https://doi.org/10.5194/hess-24-4943-2020, 2020.

Author:
Axel Bronstert (Hillflow1D), Gunther Krausss (translation into Java, LintulCC), Thuy Nguyen (LintulCC, Documentation)
See Also:

Component Variables

Content TypeNameDescriptionData TypeUnitMin ValueMax ValueDefault Value
constantcAltitudeAltitudeDOUBLEm--0.0
constantcBELMANSIf true, Potential Soil Evaporation according to BELMANS is usedBOOLEAN1--false
constantcBINTDrainage parameter b for calculation interception by RUTTER (0 if unknown)DOUBLE1--0.0
constantcCO2AAtmospheric CO2 concentrationDOUBLEμmol/mol--0.0
constantcCiCaRatioRatio of intercellular CO2 concentration and atmospheric CO2 concentrationDOUBLE1--0.7
constantcD0Sensivitity parameter of stomata to vapor pressure deficitDOUBLEPa--2000.0
constantcDIREKTIf true, ETP estimations from an external input file are usedBOOLEAN1--false
constantcDOYEMDay of year of crop emergency. If not set, then emergence will occur on the DOY where iDoSow is true.INTd---
constantcDSTODrainage rate when interception capacity (INTMAX) is exceeded (required to calculate interception according to RUTTER, 0 if unknown)DOUBLEmm/s--0.0
constantcDTXArray of time intervals (event dependent time interval)INTARRAYs---
constantcDZF Depth of the soil layer where lateral subsurface flow occursDOUBLEm--0.0
constantcEAKMCEnergy activation for Michaelis-mentent constant for CO2DOUBLEJ mol-1--79430.0
constantcEAKMOEnergy activation for Michaelis-mentent constant for CO2 DOUBLEJ mol-1--36380.0
constantcEAVCMXEnergy activation for maximimum carboxylation rate of RubiscDOUBLEJ mol-1--65330.0
constantcFEURThetaR (residual soil water content after drying) in the subsurface flow layer for vanGenuchten equationDOUBLEcubic_metre_per_cubic_metre---
constantcGALPHAParameter alfa in the subsurface flow layer for the vanGenuchten equationDOUBLEreciprocal_metre---
constantcGAMmaxLowerLimitMinimum value for CO2 compensation pointDOUBLEμmol/mol--3.0
constantcGFDURThermal time time of grain filling duration (from anthesis to maturity or harvest)DOUBLE°C d---
constantcGS0Minimum stomatal conductance when radiation and photosynthesis close to 0DOUBLEmol m-2 s-1--0.05
constantcGSa1Slope of photosynthesis and stomatal conductance modelDOUBLE1--6.0
constantcGenAlfaParameter alfa for each soil layer for vanGenuchten equationDOUBLEARRAYm-1---
constantcGenDeltaThetaResolution of theta for pre-calculating and storing the vanGenuchten valuesDOUBLEm3/m3--0.01
constantcGenNParameter n for each soil layer for vanGenuchten equationDOUBLEARRAY1---
constantcGenThetaRThetaR (residual soil water content after drying) for each soil layer for vanGenuchtens equationDOUBLEARRAYm3/m3---
constantcHAUDEIf true, Reference ET according to HAUDE is usedBOOLEAN1--false
constantcHLIM3HThreshold of soil-water tension for crop transpiration reduction at hight transpirationDOUBLEm---
constantcHLIM3LThreshold of soil-water tension for crop transpiration reduction at low transpirationDOUBLEm---
constantcHLIM4Threshold of soil-water tension for crop transpiration reduction to be 0 (no crop available water)DOUBLEm---150.0
constantcHOMAXlimit at which infiltration surplus runs offDOUBLEmm/h---
constantcHZMAXlimit at which subsurface flow occursDOUBLEmm---
constantcHeatStressTableFactorHeat stress factor as function of temperature (c.f. TMPTB)DOUBLEARRAY1-- 0.5 0.5 1.0 1.0 0.5 0.0
constantcHeatStressTableTemperatureTemperature (tmax - .25*(tmax-tmin)) for heat stress factor (c.f. TMPTB)DOUBLEARRAY°C-- 0.0 8.0 10.0 29.0 35.0 40.0
constantcIBUSwitch for lower soil boundary: 0=no flow, 1=constant, 2=free flow INT1---
constantcILAIInitial value of LAIDOUBLEm2/m2--0.0
constantcILPNInitial value of number of leaf primordiaDOUBLE1--0.0
constantcINTMAXmaximum interception capacity of the vegetation in mmDOUBLEmm--0.0
constantcIQOSwitch for infiltration surplus method: 0=complete runoff, 1=no runoff, 2=runoff up to QOCONST, 3=runoff if greater than HOMAXINT1---
constantcIQZSwitch for subsurface flow method: 0=complete runoff, 1=no runoff, 2=runoff up to QZCONST, 3=runoff if greater than HZMAXINT1---
constantcIROOTswitch for distribution of roots per layer: 1=uniform(FEDDES), 2=triangle(PRADAS), 3=trapez(VGENUCHTEN), 4=as input from other moduleINT1---
constantcIRRIGIrrigation switch (1 irrigation on and 0 is off)BOOLEAN1--false
constantcIWLVGInitial value of dry weight of green leafDOUBLEg/m2--0.0
constantcIWRTInitial value of dry weight of rootDOUBLEg/m2--0.0
constantcIWSOInitial value of dry weight of organDOUBLEg/m2--0.0
constantcIWSTInitial value of dry weight of stemDOUBLEg/m2--0.0
constantcIZVARYSwitch whether soil layer thickness is considered to be Constant(=0) or variable(=1)INT1--0
constantcJMUMOLConversion energy from radiation to mole photonDOUBLEmol MJ-1--4.56
constantcKC25CO2 turnover rate of Rubisco at 25°C (micromol CO2 g-1 Rubisco s-1)DOUBLEmicromol g-1 s-1--2.0
constantcKDFExtinction coefficient of leaf for diffuse fluxDOUBLE1---
constantcKMC25Michaelis-Menten constant for CO2 at temperature 25°CDOUBLEμmol/mol--404.9
constantcKMO25Michaelis-Menten constant for O2 at temperature 25°CDOUBLEμmol/mol--278.4
constantcKSATSaturated hydraulic conductivity for each soil layerDOUBLEARRAYm/s---
constantcKcompCompensatory hydraulic conductivityDOUBLEd-1--2.0E-6
constantcKrsHydraulic conductance from soil to leafDOUBLEd-18.0E-66.0E-58.0E-6
constantcLABIZEPTswitch for interception calculation: 0=no interception, 1=constant interception, 2=Rutter-modelINT1--0
constantcLAICRCritical leaf area indexDOUBLEm2/m2--4.0
constantcLATLatitude of the weather stationDOUBLE°--0.0
constantcLNUFLELeaf number in the main stem when flag leaf shown upDOUBLE1--7.0
constantcLayerDepthThickness of the soil layersDOUBLEARRAYmm---
constantcLeavesPartitioningTableFractionFraction of total dry matter to leaves as function of DVS (c.f. PCLTB)DOUBLEARRAY1-- 0.325 0.325 0.48 0.48
constantcLeavesPartitioningTableTsumTsum for fraction of total dry matter to leaves (c.f. PCLTB)DOUBLEARRAY°C d-- 0.0 100.0 265.0 670.0
constantcLongitudeLongitude of the weather stationDOUBLE°--0.0
constantcLongitudeOfTimezoneCenterLongitude of the weather stations time zone centerDOUBLE°--0.0
constantcMAINLVMaintenance respiration coefficient of leaves, g CH2O g-1 DM d-1DOUBLEg/g---
constantcMAINRTMaintenance respiration coefficient of root, g CH2O g-1 DM d-1DOUBLEg/g---
constantcMAINSOMaintenance respiration coefficient of organ, g CH2O g-1 DM d-1DOUBLEg/g---
constantcMAINSTMaintenance respiration coefficient of stems, g CH2O g-1 DM d-1DOUBLEg/g---
constantcMAKKINKIf true, Reference ET according to MAKKINK is usedBOOLEAN1--false
constantcMESSUNGIf true, Reference ET is approximated from measurements of potential evapotranspiration in an external input fileBOOLEAN1--false
constantcMODDTRFactor to modify daily solar radiationDOUBLE1--1.0
constantcMODTMPTemperature increment to modify daily temperatureDOUBLE°C--0.0
constantcMONTEITHIf true, Reference ET according to MONTEITH is usedBOOLEAN1--false
constantcMaxFractionLeavesMaximum partritiong ratio to leaf after two leavesDOUBLE1--0.46
constantcMaxFractionRootsMaximum partritiong ratio to root after emergencyDOUBLE1--0.34
constantcMaxSLAMaximum Specific leaf areaDOUBLEm2/g--0.03
constantcMaximalCROPHTMaximal crop heightDOUBLEm--1.0
constantcMinSLAMininum Specific leaf areaDOUBLEm2/g--0.017
constantcMinimalTTANTHMinimal value for thermal time when plant flowering (anthesis) occursDOUBLE°C d--900.0
constantcMinimalTimeStepMinimal time step for calculation of vertical water flows in the soil matrixDOUBLEs1.0E-53600.00.1
constantcNGENUParameter n in the subsurface flow layer for the vanGenuchten equationDOUBLE1---
constantcO2Atmospheric O2 concentrationDOUBLEμmol/mol--0.0
constantcPCLTBFraction table for leavesDOUBLEARRAY1---
constantcPCRTBFraction table for rootsDOUBLEARRAY1---
constantcPOTGGR-DOUBLE1---
constantcParTsumLeafThermal time determine the shape of partritiong curve for leavesDOUBLE°C d--406.0
constantcParTsumRootThermal time determine the shape of partritiong curve for rootDOUBLE°C d--130.0
constantcPhyllochroneInterceptIntercept of relation between the mean thermal rate of leaf appearance ( °C day-1) and the rate of change of day length at crop emergence (h day-1)DOUBLEhour (°Cd)-1--0.0117
constantcPhyllochroneSlopeslope of relation between the mean thermal rate of leaf appearance (°C day-1) and the rate of change of day length at crop emergence (h day-1)DOUBLE(°Cd)-1--0.024
constantcPsiCPsychromatic instrument constantDOUBLEkPa °C-1--0.066
constantcPsiLeafOpenLeaf water potential when stomata are fully opened (specific for plant)DOUBLEm--0.0
constantcPsiLeafQuotientMinimumMinimal value of PsiLeaf quotientDOUBLE10.01.00.0
constantcPsiLeafThresholdThreshold of leaf water potential (specific for plant)DOUBLEm-200.0-150.0-160.0
constantcQ10Factor acounting for increase in maintance respiration with a 10°C rise temperatureDOUBLE1---
constantcQOCONSTmaximum of runoffDOUBLEmm/h---
constantcQZCONSTmaximum of subsurface flowDOUBLEmm---
constantcRGRLRelative growth rate of leaf area during exponential growthDOUBLE(°C d)-1---
constantcRITCHIEIf true, Potential Soil Evaporation according to RITCHIE is usedBOOLEAN1--false
constantcRainIntervalTime intervall between precipitation measurements in secondsINTs---
constantcRboundBoundary layer resistanceDOUBLEs m-1--7.0
constantcRoCpVolumetric heat capacityDOUBLEMJ m-3 °C-1--0.0012
constantcRootsPartitioningTableFractionFraction of total dry matter to roots as function of DVS (c.f. PCRTB)DOUBLEARRAY1-- 0.5 0.5 0.35 0.35
constantcRootsPartitioningTableTsumTsum for fraction of total dry matter to roots (c.f. PCRTB)DOUBLEARRAY°C d-- 0.0 100.0 265.0 670.0
constantcSAINTCSwitch for rain interception calculation (0 no intercept, 1 intercept)DOUBLE1--0.0
constantcSCPScattering coefficients of leaf for PARDOUBLE1--0.2
constantcSRNOFFSwitch for runoff calculation (0 no runoff, 1 runoff)DOUBLE1--0.0
constantcTBASEBase temperatureDOUBLE°C--0.0
constantcTHETAOInitial volumetric water contentDOUBLEARRAYm3/m3---
constantcTHETASVolumetric water content at saturation for each layerDOUBLEARRAYm3/m3---
constantcTHETBUInitial volumetric water content at the bottomDOUBLEm3/m3---
constantcTMPTBTable for heatstress factorDOUBLEARRAY1---
constantcTTSSETemperature sum from sowing to emegerceDOUBLE°C d---
constantcTopsoilDepthdepth of topsoilDOUBLEm--0.9
constantcUsePsiLeafQuotientIf true, use PsiLeafQuotient. If false (default) use TRANRF for stress calculation (including additional DTGA correction)BOOLEAN1--false
constantcVCmaxUpperLimitUpper limit value for maximum carboxylation rateDOUBLEmicromol m-2 s-1--50.0
constantcVMAMacropore volume in the subsurface flow layerDOUBLEm3/m3---
constantcWaterUptakeMethodWhich method to use (Feddes (default), Couvreur)CHAR--
inputiActualPrecipitationHeightactual precipitation heightDOUBLEARRAYmm---
inputiActualPrecipitationTimetime in seconds of day when the precipitation is measured INTARRAYs---
inputiBBGsoil cover rate with plants (calculating interception by RUTTER)DOUBLE1---
inputiDoHarvest-BOOLEAN---false
inputiDoSow-BOOLEAN---false
inputiFACPLplant factor for calculating evapotranspiration by MAKKINK or HAUDEDOUBLE1---
inputiLplplant height in cmDOUBLEcm---
inputiOpenPanEvaporationMeasured open pan evapotranspirationDOUBLE1---
inputiPHIrelative humidityDOUBLE1---
inputiRAINDiurnalHourly precipitationDOUBLEARRAYmm---
inputiRDDDiurnalHourly global radiationDOUBLEARRAYMJ m-2 hour-1---
inputiRLVRoot lengthDOUBLEARRAYmm---
inputiRelativeRootLengthPerLayerrelative root length per layerDOUBLEARRAY10.01.0-
inputiRgglobal solar radiationDOUBLEW/m2---
inputiRnnet solar radiation in W/m**2DOUBLEW/m2---
inputiRootRestrictionFactorroot restriction factor due to root density and agingDOUBLEARRAYm0.020.0-
inputiTEMPair temperatureDOUBLE°C---
inputiTMDiurnalHourly air temperatureDOUBLEARRAY°C---
inputiVPDiurnalHourly vapor actual pressureDOUBLEARRAYkPa---
inputiWCLVolumetric in each soil layerDOUBLEARRAYcm3/cm3---
inputiWIND2wind speed at 2m heightDOUBLEm/s---
inputiWNDiurnalHourly wind speedDOUBLEARRAYm s-1---
inputiZROOTDepth of roots in mDOUBLEm---
statesDMFDepth of the soil layer where lateral subsurface flow occursDOUBLEm---
statesDRYDAYNumber of days without rainINT1---
statesDTCurrent time stepINTs---
statesDTHResolution of theta for calculating soil water tensionsDOUBLEARRAYm3/m3---
statesDTMAXLargest time step for simulationsDOUBLE1--0.0
statesDTOLDPrevious time stepINTs---
statesDVSDevelopment stage of crop (from 0 to 2)DOUBLE10.0-0.0
statesDZThickness of soil layerDOUBLEARRAYm---
statesDZFNEUThickness of the subsurface flow layer as a multiple NZF of the thickness of the first soil layerDOUBLEm---
statesDZMDepth of the top layer assuming constant thickness of layersDOUBLEm---
statesETPACTInternal variable to calculate actual evapotransporation (m per second) as sum of TRAACT and EVAACT DOUBLEm/s---
statesETPPOTInternal variable for VETPOT (m per second), caution: if interception then ETPPOT=VEVPOT-Interception; DOUBLEm/s---
statesEVAACTActual evaporation from soil surface in m per secondDOUBLEm/s---
statesEVAPOTInternal potential evaporation from the soil surface in m per secondDOUBLEm/s---
statesFAVDaily vertical flux (FLV) from one soil layer to the adjacent soil layers divided by NTDOUBLEARRAYm---
statesFEUAverage volumetric water content in the subsurface flow layer (average over all elemnts within component layer)DOUBLEm3/m3---
statesFEUSVolumetric water content at saturation in the subsurface flow layerDOUBLEm3/m3---
statesFLVDaily vertical flux from one soil layer to the adjacent soil layersDOUBLEARRAYm---
statesHWater level (inundation depth) at the soil surface before each time stepDOUBLEm---
statesH1Water level (inundation depth) at the soil surface after each time step DOUBLEm---
statesHZWater level in the subsurface flow layer before each time stepDOUBLEm---
statesHZ1Water level in the subsurface flow layer after each time stepDOUBLEm---
statesIDTACTCode of the four possible time steps (DTX) as defined by the user in the control.xml file INT1---
statesINFTotal amount of water (INFMIK+INFMAK) infiltrating at the soil surface (?) per time step DT in m per second DOUBLEm/s---
statesINFEXInfiltration excess is the excess of net precipitation which can not infiltrate into the soil at the soil surface per time step DT in m per secondDOUBLEm/s---
statesINFMAKAmount of water infiltrating into the macro-pores of the soil at the soil surface (?) per time step DT in m per secondDOUBLEm/s---
statesINFMIKAmount of water infiltrating into the pores in the soil matrix at the soil surface (?) per time step DT in m per secondDOUBLEm/s---
statesINTACTAmount of water in the interception pool at the beginning of each dayDOUBLEm---
statesINTENSRainfall intensity in m per dayDOUBLEm/d---
statesINTEVAPDirect evaporation of water from the interception pool (leaves and stems) per time step DTDOUBLEm/s---
statesLAILeaf area indexDOUBLEm2/m2--0.0
statesMAEXMatrix excess (water which can not infiltrate from the macropores to the micropores) within the subsurface flow layer per time step DT in m per secondDOUBLEm/s---
statesMAINFInfiltration rate into the soil matrix within the subsurface flow layer (?) per time step DT in m per secondDOUBLEm/s---
statesMSLNMain stem leaf numberDOUBLE1--0.0
statesMSLPNMain stem leaf perimodia numberDOUBLE1--0.0
statesNDTtotal number of time steps DTXINT1---
statesNETRAINNet precipitation (rain minus interception) in m per secondDOUBLEm/s---
statesNSOILIndex numbers of a the soil layer (array starts with 0)INTARRAY1---
statesNTIs equal to 1 or a multiple of the actual time step (DTORG/DTACT)INT1---
statesNZDTMTotal number of soil layersINT1---
statesNZFNumber of soil layers in the interflow layerINT1---
statesNZRNumber of layers with rootsINT1---
statesOUTFLtemporary variable for outflow rate from one soil layer to the adjacent layerDOUBLEmm--0.0
statesPARSUMPhotosynthesis active radiation sumDOUBLEJ/m2--0.0
statesQOUTSurface run off (=matrix excess at the soil surface INFEX)DOUBLEm/s---
statesQOUTZSubsurface run off (outflow from of the subsurface flow layer=Matrix excess in the subsurface flow layerDOUBLEm/s---
statesRAINInternal amount of rainfall per time step in m per secondDOUBLEm/s---
statesSINTEVDaily evaporation of water from the interception pool (leaves and stems)DOUBLEm---
statesSLASTRSum of last rainfall eventDOUBLEmm---
statesSUMIEXSum of infiltration excess at the soil surface per dayDOUBLEm---
statesSUMINFSum of infitration at the soil surface per dayDOUBLEm---
statesSUMINTAmount of water in the interception pool at the end of each dayDOUBLEm---
statesSUMMEXMatrix excess within the subhsurface flow layer per day (sum of MAINF)DOUBLEm---
statesSUMMINInfiltration rate into the matrix of the subsurface flow layer per day (sum of MAEX)DOUBLEm---
statesSUMNETRDaily sum of net precipitation in mDOUBLEm---
statesSUMRAINDaily sum of rainfall in mDOUBLEm---
statesSUMTHEOAmount of water in a layer at start of simulation (temporary variable)DOUBLEmm---
statesTCurrent TimeINTs---
statesTHETACurrrent volumetric water content in a layerDOUBLEARRAYm3/m30.00.65-
statesTHETA1Currrent volumetric water content in a layer (temporary variable)DOUBLEARRAYm3/m30.00.65-
statesTLASTRTime in seconds since last rainfall event occuredINTs---
statesTRAACSActual crop transpiration from a soil layer IZ in m per secondDOUBLEARRAYm/s---
statesTRAACTActual crop transpiration in m per secondDOUBLEm/s---
statesTRAACTSubActual crop transpiration from subsoil layers (defined as all soil layers below TopsoilDepth) in m per secondDOUBLEm/s---
statesTRAACTTopActual crop transpiration from topsoil layers (defined by constant TopsoilDepth) in m per secondDOUBLEm/s---
statesTRAPOTPotential crop transpiration in m per secondDOUBLEm/s---
statesTSUMThermal time degreeDOUBLE°C d--0.0
statesVETPOTInternal reference crop evaporation according to Haude, Makkink or Monteith-Rijtma or input variable in m per secondDOUBLEm/s---
statesVEVPOTPotential evaporation from the soil surface according to Belmans or Ritchie in m per secondDOUBLEm/s---
statesWLVGDry weight of green leafDOUBLEg/m2--0.0
statesWRTDry weight of rootDOUBLEg/m2--0.0
statesWSODry weight of organDOUBLEg/m2--0.0
statesWSTDry weight of stemDOUBLEg/m2--0.0
raterDVRRate of phenological developmentDOUBLE1--0.0
raterPARInstantaneous flux of photosynthesis active radiationDOUBLEJ/(m2 s)--0.0
raterRLAIDaily change of green leaf area LAIDOUBLEm2/(m2 d)--0.0
raterRLERate change of leaf appearance DOUBLEd-1--0.0
raterRLPIRate change of leaf primordiaDOUBLEd-1--0.0
raterRTSUMRate change of thermal time degreeDOUBLE°C d--0.0
raterRWLVGDaily change of dry weight of leaf /Dry matter growth rate of leafDOUBLEg/m2--0.0
raterRWRTDaily change of dry weight of root /Dry matter growth rate of rootDOUBLEg/m2--0.0
raterRWSODaily change of dry weight of organ /Dry matter growth rate of organDOUBLEg/m2--0.0
raterRWSTDaily change of dry weight of stem /Dry matter growth rate of stemDOUBLEg/m2--0.0
outALBAlbedo, reflection coefficient for short-ware radiationDOUBLE1--0.0
outALBSAlbedo, reflection coefficient for soil surfaceDOUBLE1--0.0
outAMAXshadeLight saturated leaf photosynthetic of shaded leafDOUBLEg/(m2 s)--0.0
outAMAXshadeDiurnalHourly light saturated photosynthesis rate of sunlit leaveDOUBLEARRAYmicromol m-2 s-1---
outAMAXsunLight saturated leaf photosynthetic of sunlit leafDOUBLEg/(m2 s)--0.0
outAMAXsunDiurnalHourly light saturated photosynthesis rate of sunlit leaveDOUBLEARRAYmicromol m-2 s-1---
outActualEvapotranspirationSum of ActualEvaporation and ActualTranspirationDOUBLEmm---
outActualSoilEvaporationActual soil evaporation as affected by potential evporation and soil mositure in the upper soil layersDOUBLEmm---
outActualSoilEvaporationDiurnalDiurnal Actual soil evaporation as affected by potential evporation and soil mositure in the upper soil layersDOUBLEARRAYmm---
outActualTranspirationActual crop transpiration as affected by crop water demand and crop available soil waterDOUBLEmm---
outActualTranspirationDiurnalDiurnal Actual crop transpiration as affected by crop water demand and crop available soil waterDOUBLEARRAYmm---
outActualTranspirationSubsoilActual crop transpiration from subsoil layersDOUBLEmm---
outActualTranspirationTopsoilActual crop transpiration from topsoil layersDOUBLEmm---
outAnthesisDOYDOY of AnthesisINT11366-
outAnthesisDateDate of AnthesisDATE1---
outBBRADBlack body radiationDOUBLEJ/(m2 s)--0.0
outBottomFlowDaily amount of deep percolation below the profile depth (equal to FLUXU)DOUBLEmm---
outCDSF1Cumulative water stress factor reduces grain yieldDOUBLE1--0.0
outCO2IshadeCO2 concentration of shaded leafDOUBLEμmol/mol--0.0
outCO2IshadeDiurnalHourly concentration of CO2 of shaded leaveDOUBLEARRAY---
outCO2IsunCO2 concentration of sunlit leafDOUBLEμmol/mol--0.0
outCO2IsunDiurnalHourly concentration of CO2 of sunlit leaveDOUBLEARRAY---
outCROPHTCrop heightDOUBLEm--0.0
outCUMREMOBCumulative mobilized assimilated from stem to grainDOUBLEg/m2--0.0
outCropCycleCountNumber of finished crop cycles, incremented at harvestINT1010000
outDAEDay after emergencyINTd--0
outDANTHDay of anthesisINTd--0
outDAVTMPDaily average temperatureDOUBLE°C--0.0
outDFGROSshadeDiurnalHourly cumulative gross assimilation rate of the shaded leaveDOUBLEARRAYmicromol m-2 s-1---
outDFGROSsunDiurnalHourly cumulative gross assimilation rate of the sunlit leaveDOUBLEARRAYmicromol m-2 s-1---
outDFGROshadeDaily gross assimiliate of shaded leaveDOUBLEmicromol m-2 s-1--0.0
outDFGROsunDaily gross assimiliate of sun leaveDOUBLEmicromol m-2 s-1--0.0
outDLAIDeath rate of leaf areaDOUBLEm2/(m2 d)--0.0
outDLEAVESDeath leaf rate due to aging and water stressDOUBLEd-1--0.0
outDLVDeath rate of leaf in term of weighDOUBLEg/(m2 d)--0.0
outDOYEMactualDay of year of crop emergency. Corresponds to cDOYEM if cDOYEM is given, otherwise to the DOY when iDoSow occurs.INTd--0
outDRScropH2ODaily canopy resistance to water vaporDOUBLEs m-1--0.0
outDSF1Water stress factor on leaf growthDOUBLE1--0.0
outDTEFFDaily effective temperatureDOUBLE°C--0.0
outDTGADaily total gross CO2 asimilation of the cropDOUBLEg/(m2 d)--0.0
outDTGADiurnalHourly cumulative of gross assimilation rate of the crop canopyDOUBLEARRAYmicromol m-2 s-1---
outDTRDaily solar radiation =RDD*MODDRTDOUBLEJ/(m2 d)--0.0
outDVSFAChttp://www.wurvoc.org/vocabularies/om-1.8/gram_per_square_metreDOUBLE1--0.0
outDaylengthDaylengthDOUBLEh--0.0
outDgsCO2Daily stomatal conductance to CO2DOUBLEmm/d--0.0
outDrynessFactorDryness factor in each layer (input to SlimRoots)DOUBLEARRAY1---
outEFFshadeQuantum yield of shaded leafDOUBLEg/MJ--0.0
outEFFshadeDiurnalHourly quantum yield of shaded leavesDOUBLEARRAYg/MJ---
outEFFsunQuantum yield of sunlit leafDOUBLEg/MJ--0.0
outEFFsunDiurnalHourly quantum yield of sunlit leavesDOUBLEARRAYg/MJ---
outEMERGParameter to indicate the emergencyINT1--0
outET0Potential evapotranspiration (ETD+ ETR)DOUBLEmm/d--0.0
outET0DaytimeDiurnalHourly potential evapotranspiration (ETD+ ETR) at daytimeDOUBLEARRAYmm/h---
outET0DiurnalHourly potential evapotranspiration (ETD+ ETR)DOUBLEARRAYmm/h---
outETDEvapotranspiration due to radiation termDOUBLEmm/d--0.0
outETDDiurnalHourly evapotranspiration due to radiation term DOUBLEARRAYmm/h---
outETREvapotranspiration due to evaporative term (vpd)DOUBLEmm/d--0.0
outETRDiurnalHourly evapotranspiration due to evaporative term (vpd)DOUBLEARRAYmm/h---
outEmergenceDOYDOY of EmergenceINT11366-
outEmergenceDateDate of EmergenceDATE1---
outFCLEARSky clearness function in calculation of net long-wave radiationDOUBLEJ/(m2 s)--0.0
outFGROSDiurnalHourly gross assimilation rate of the whole canopyDOUBLEARRAYmicromol m-2 s-1---
outFGROSshadeDiurnalHourly gross assimilation rate of the shaded leaveDOUBLEARRAYmicromol m-2 s-1---
outFGROSsunDiurnalHourly gross assimilation rate of the sunlit leaveDOUBLEARRAYmicromol m-2 s-1---
outFLUXUDaily amount of deep percolation below the profile depthDOUBLE1---
outFSLLAFration of sunlit leaf areaDOUBLE1--0.0
outFSLLADiurnalHourly fraction of leaf area of sunlit and shaded leavesDOUBLEARRAY---
outFieldCapacityFieldCapacityDOUBLEARRAYm3/m3---
outGLAINet growth rate of leaf area indexDOUBLEm2/(m2 d)--0.0
outGLVDry matter of growth rate of leavesDOUBLEg/(m2 d)--0.0
outGRAINNTotal grain weightDOUBLEg/m2--0.0
outGScropH2ODiurnalHourly canopy conductance to water vaporDOUBLEARRAYm s-1---
outGSshadeH2OStomatal conductance shaded leaf to H2ODOUBLEm s-1--0.0
outGSshadeH2ODiurnalHourly stomatal conductance to water vapor of shaded leavesDOUBLEARRAYm s-1---
outGSsunH2OStomatal conductance sunlit leaf to H2ODOUBLEm s-1--0.0
outGSsunH2ODiurnalHourly stomatal conductance to water vapor of sunlit leavesDOUBLEARRAYm s-1---
outGTOTALDaily total gross CH2O assimilation of the cropDOUBLEg/(m2 d)--0.0
outHasEmergedHas emergedBOOLEAN1--false
outHasFloweredGas floweredBOOLEAN1--false
outHasMaturedIs matureBOOLEAN1--false
outINTRADIntercep PAR for radiation use efficiency calcuationDOUBLEMJ/(m2 d)--0.0
outInfiltrationDaily amount of infiltrated water at the soil surface (mm)DOUBLEmm---
outIsAnthesistrue if Anthesis dateBOOLEAN1--false
outIsEmergencetrue if Emergence dateBOOLEAN1--false
outIsMaturitytrue if maturity dateBOOLEAN1--false
outLAIANTHLeaf area index at anthesisDOUBLE--0.0
outLayerFlowDaily vertical flow from a soil layer into the adjacent soil layersDOUBLEARRAYmm---
outLessMobileWaterTotal amount of less mobile water (WR-WHT15R) in each layer (only used for solute transport) (mm)DOUBLEARRAYmm---
outMAINTMaintenance respiration after considration of effective temperatureDOUBLEg/m2--0.0
outMAINTSMaintenance respiration after considration of effective temperatureDOUBLEg/m2--0.0
outMaturityDOYDOY of MaturityINT11366-
outMaturityDateDate of MaturityDATE1---
outMobileWaterDaily amount of mobile water (WM) in each soil layer (mm)DOUBLEARRAYmm---
outONRADNet radiation (net short-ware radiation minus net long-wave radiation)DOUBLEJ/(m2 s)--0.0
outONRADDiurnalHourly all net radiationDOUBLEARRAYMJ m-2 h-1---
outORLOSSNet long-wave radiation DOUBLEJ/(m2 s)--0.0
outPARINTIntercepted PARDOUBLEMJ/(m2 d)--0.0
outPCEDWPartitioning fraction to storage organsDOUBLE--0.0
outPCLDWPartitioning fraction to leavesDOUBLE1--0.0
outPCRDWPartitioning fraction to rootsDOUBLE1--0.0
outPCSDWPartitioning fraction to stemsDOUBLE1--0.0
outPHEADWWeight of shoot at emgerce, at flag leaf emergence, and at anthesisDOUBLEARRAYg/m2---
outPHEDAEDays at emgerce, at flag leaf emergence, and at anthesisINTARRAYd-- 0 0 0
outPHOTMPDaily average temperature after modifying temperature factor (MODTMP)DOUBLE°C--0.0
outPHYPhylochronDOUBLE°C d--0.0
outPRWSOAssimilate source for grain growth DOUBLEm2/m2--0.0
outPotentialRScropH2ODiurnalHourly canopy resistance to water vapor (no water stress)DOUBLEARRAYs m-1---
outPotentialSoilEvaporationPotential soil evaporation (provided by other SimComponents e.g. CropEvapoTranspirationDualCoeff.java)DOUBLEmm---
outPotentialSoilEvaporationDiurnalDiurnal Potential soil evaporation (provided by other SimComponents e.g. CropEvapoTranspirationDualCoeff.java)DOUBLEARRAYmm---
outPotentialTranspirationPotential crop transpiration (provided by other SimComponents e.g. CropEvapoTranspirationDualCoeff.java)DOUBLEmm---
outPotentialTranspirationDiurnalDiurnal Potential crop transpiration (provided by other SimComponents e.g. CropEvapoTranspirationDualCoeff.java)DOUBLEARRAYmm---
outPsiLeafLeaf water potential (pressure head of leaf) (hourly)DOUBLEARRAYm---
outPsiLeafQuotientDiurnal(psi_leaf-psi_trh)/(0 - psi_trh) (hourly)DOUBLEARRAY10.01.0-
outPsiRootSoil to root water potential (pressure head of root) (hourly)DOUBLEARRAYm---
outQOMAXDaily maximum surface run off rateDOUBLEmm/s---
outQOSUMDaily amount of surface run off in mmDOUBLEmm---
outQZMAXDaily maximum subsurface run off rateDOUBLEmm/s---
outQZSUMDaily amount of subsurface run off in mmDOUBLEmm---
outRAINoutDaily precipitationDOUBLEmm/d--0.0
outRCPHOERate change of photoperiod at emergence datesDOUBLEh--0.0
outRDDDaily global radiationDOUBLE°C--0.0
outRDRSHRelative death rate due to self-shading at high LAIDOUBLEd-1---
outREMOBMobilization of assimilate from stem to the grainDOUBLEg/m2--0.0
outRNSNet short-wave radiation DOUBLEJ/(m2 s)--0.0
outRRATIORatio of root to total root+shoot dry matterDOUBLE1--0.0
outRSINKSink for grain growthDOUBLEg/m2--0.0
outRScropH2ODiurnalHourly canopy resistance to water vaporDOUBLEARRAYs m-1---
outRUERadiation use efficiencyDOUBLEg/MJ--0.0
outRainInterception-DOUBLEm---
outReducedCropExtractionPointReducedCropExtractionPointDOUBLEARRAYm3/m3---
outRetainedWaterDaily amount of retained water (WR) in each soil layer (mm)DOUBLEARRAYmm---
outRootWaterUptakePerLayerRoot water uptake per layer (daily)DOUBLEARRAYmm/d---
outSDWANTWeight of stem at anthesisDOUBLEg/m2--0.0
outSLASpecific leaf areaDOUBLEm2/g--0.0
outSTRESSTranspiration reduction factor (ATRAN/PTRAN)DOUBLE1--0.0
outSUETACActual evapotranspiration in mm per day (equal to SimVariable 'ActualEvapotranspiration') DOUBLEmm---
outSUETPOPotential Evapotranspiration in mm per day DOUBLEmm---
outSUEVACActual soil evaporation in mm per day (equal to SimVariable 'ActualSoilEvaporation')DOUBLEmm---
outSUEVPOPotential soil evaporation in mm day (equal to SimVariable 'PotentialSoilEvaporation')DOUBLEmm---
outSUEVREActual evaporation in mm per day after reduction due to low soil water content in topsoil layer (only applicable when open pan evapioration is used ?)DOUBLEmm---
outSUTRACActual crop transpiration in mm per day (equal to SimVariable 'ActualTranspiration')DOUBLEmm---
outSUTRPOPotential crop transpiration in mm per day (equal to SimVariable 'PotentialTranspiration')DOUBLEmm---
outSUTTREActual transpiration in mm per day after reduction due to low soil water content in individual layers (only applicable when open pan evapioration is used ?)DOUBLEmm---
outSVAPSaturated vapor pressureDOUBLEkPa--0.0
outSWITCHThe switch of phenology stageINT1--0
outSoilHeatDiurnalHourly soil heat fluxDOUBLEARRAYMJ m-2 h-1---
outSubsurfaceFlowDaily amouont of subsurface run off (equal to QZSUM)DOUBLEmm---
outSurfaceFlowDaily amount of surface run off in mm (equal to QOSUM)DOUBLEmm---
outTDWtotal dry matter (= root + shoot)DOUBLEg/m2--0.0
outTEFFEffective temperature for growth respirationDOUBLE°C--0.0
outTFACTemperature factor reduces grain yieldDOUBLE1--0.0
outTMMNDaily minimum temperatureDOUBLE°C--0.0
outTMMXDaily maximum temperatureDOUBLE°C--0.0
outTRANRFDiurnalTranrf (Act/Pot) (hourly)DOUBLEARRAY1---
outTRANSLOCTranslocation of assimilation rates into the roots due to the lack of sinkDOUBLEg/m2--0.0
outTSUMendThermal time at end of growing seasonDOUBLE°C d--0.0
outTTANTHThermal time from sowing to anthesisDOUBLE°C d--0.0
outTTFLEThermal time from sowing to the appearance of flag leaveDOUBLE°C d--0.0
outTTMATThermal time from sowing to maturityDOUBLE°C d--0.0
outTWPAWDaily water stress index calculated based on soil water contentDOUBLE1--0.0
outTWPAWDiurnalHourly water stress index calculated based on soil water contentDOUBLEARRAY1---
outTotalAvailWaterSum of mobile and retained water in each layer (Soil available water)(mm)DOUBLEARRAYmm---
outTotalAvailWaterVolumetricVolumetric water content equivalent for the sum of mobile and retained water in each layerDOUBLEARRAYm3/m3---
outTotalWaterTotal water content in each soil layer (mm)DOUBLEARRAYmm---
outTotalWaterInProfileTotal water content over all soil layers (mm)DOUBLEmm---
outTotalWaterInProfileVolumetricAverage cvolumetric water content over all layers in the soil profileDOUBLEm3/m3---
outTotalWaterVolumetricVolumetric total water content in each soil layerDOUBLEARRAYm3/m3---
outVPActual vapour pressureDOUBLEkPa--0.0
outVPDVapor pressure deficit of the airDOUBLEkPa--0.0
outWFRAmount of less mobile water in each layer not available for upward movement of solutes or water (see explanation and use in SlimNitrogen)DOUBLEARRAYmm---
outWHT15RRetained water below 0.5*wilting point in each layer not available for movement of solutesDOUBLEARRAYmm---
outWNWind speedDOUBLEm s-1---
outWR33Amount of retained water in finer pores of each layer available for upward movement of solutes or water (see explanation and use in SlimNitrogen)DOUBLEARRAYmm---
outWRHRetained water at field capacity in each soil layerDOUBLEARRAYmm---
outWSHOOTWeight of shoot (stem+leaf+storage organ)DOUBLEg/m2--0.0
outWiltingPointWiltingPointDOUBLEARRAYm3/m3---
outWithCropCrop is presentBOOLEAN1--false
  • Nested Class Summary

    Nested classes/interfaces inherited from class net.simplace.sim.model.FWSimComponent

    net.simplace.sim.model.FWSimComponent.TEST_STATE
  • Field Summary

    Fields inherited from class net.simplace.sim.model.FWSimComponent

    iFieldMap, iFrequence, iInputMap, iJexlRule, iMasterComponentGroup, iName, iOrderNumber, isComponentGroup, iSimComponentElement, iSimModel, iVarMap
  • Constructor Summary

    Constructors
    Constructor
    Description
     
  • Method Summary

    Modifier and Type
    Method
    Description
    void
     
    calculate_et0(int J, double hour, double latitude, double z, double L_z, double L_m, double DAYLEN, double Temperature, double R_s, double WIND, double tCROPHT, double e_a, double RScropH2O, double PsiC, double albedo)
     
    calculate_twpaw(double CROPHT, Double[] WCFC, Double[] WCWP, Double[] LayerDepth, double VAP, double WIND, boolean IRRIG, double ONRAD, double SLOPE, double SVAP, double PsiC, Double[] RLV, Double[] WC)
     
    protected net.simplace.sim.model.FWSimComponent
    clone(net.simplace.sim.util.FWSimVarMap aVarMap)
     
    HashMap<String,net.simplace.sim.util.FWSimVariable<?>>
    Create the FWSimVariables as interface for this SimComponent
    void
    et()
     
    HashMap<String,net.simplace.sim.util.FWSimVariable<?>>
    fillTestVariables(int aParamIndex, net.simplace.sim.model.FWSimComponent.TEST_STATE aDefineOrCheck)
    called for single component test to check the components algorithm.
    protected void
    Initializes the fields by getting input and output FWSimVariables from VarMap
    void
     
    void
     
    protected void
     
    void
     

    Methods inherited from class net.simplace.sim.model.FWSimComponent

    addVariable, bind, checkCondition, createSimComponent, createSimComponent, createSimComponent, createSimComponent, doProcess, getConstantVariables, getContentType, getCreateFormXML, getDescription, getEditFormXML, getFieldMap, getFrequence, getFrequenceRuleScript, getInputs, getInputVariables, getMasterComponentGroup, getName, getOrderNumber, getOutputVariables, getVariable, getVariableField, getVarMap, initialize, isConditionCheck, isVariableAvailable, performLinks, performLinks, readInputs, removeVariable, reset, runComponentTest, setVariablesDefault, toComponentLinkingXML, toDocXML, toGroupXML, toOutputDefinitionXML, toResourcesDataXML, toResourcesDefinitionXML, toString, toXML, writeVarInfos

    Methods inherited from class java.lang.Object

    clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
  • Constructor Details

    • HillFlow1DLintulCCDiurnal

      public HillFlow1DLintulCCDiurnal()
  • Method Details

    • createVariables

      public HashMap<String,net.simplace.sim.util.FWSimVariable<?>> createVariables()
      Create the FWSimVariables as interface for this SimComponent
      Specified by:
      createVariables in interface net.simplace.sim.util.FWSimFieldContainer
      Specified by:
      createVariables in class net.simplace.sim.model.FWSimComponent
      See Also:
      • FWSimComponent.createVariables()
    • init

      protected void init()
      Initializes the fields by getting input and output FWSimVariables from VarMap
      Specified by:
      init in class net.simplace.sim.model.FWSimComponent
      See Also:
      • FWSimComponent.init()
    • initLintulCC

      public void initLintulCC()
    • initVariablesLintulCC

      public void initVariablesLintulCC()
    • process

      protected void process()
      Specified by:
      process in class net.simplace.sim.model.FWSimComponent
    • et

      public void et()
    • calculate_et0

      public HashMap<String,Double> calculate_et0(int J, double hour, double latitude, double z, double L_z, double L_m, double DAYLEN, double Temperature, double R_s, double WIND, double tCROPHT, double e_a, double RScropH2O, double PsiC, double albedo)
    • assimilate

      public void assimilate()
    • twpaw

      public void twpaw()
    • calculate_twpaw

      public HashMap<String,Double> calculate_twpaw(double CROPHT, Double[] WCFC, Double[] WCWP, Double[] LayerDepth, double VAP, double WIND, boolean IRRIG, double ONRAD, double SLOPE, double SVAP, double PsiC, Double[] RLV, Double[] WC)
    • fillTestVariables

      public HashMap<String,net.simplace.sim.util.FWSimVariable<?>> fillTestVariables(int aParamIndex, net.simplace.sim.model.FWSimComponent.TEST_STATE aDefineOrCheck)
      called for single component test to check the components algorithm.
      Specified by:
      fillTestVariables in class net.simplace.sim.model.FWSimComponent
      See Also:
      • net.simplace.sim.util.FWSimFieldContainer#fillTestVariables(int aParamIndex, TEST_STATE aDefineOrCheck)
    • clone

      protected net.simplace.sim.model.FWSimComponent clone(net.simplace.sim.util.FWSimVarMap aVarMap)
      Specified by:
      clone in class net.simplace.sim.model.FWSimComponent