net.simplace.client.simulation.lap.lintul5.Lintul5

Component for the Lintul crop model

Component Variables

Content TypeNameDescriptionData TypeUnitMin ValueMax ValueDefault Value
constantcDVSDLTdevelopment stage above which death of leaves starts in dependence of mean daily temperatureDOUBLE1--1.0
constantcDVSDRdevelopment stage above which death of roots and stems startsDOUBLE1--1.0
constantcDVSIinitial development stage of crop (from 0 to 2)DOUBLE1--0.0
constantcDVSNLTDVS stage above which no N, P and K uptakes by the crop do occurDOUBLE1--1.3
constantcDVSNTDVS stage above which N, P and K translocations to storage organs occur -DOUBLE1--0.8
constantcFERKTABtable with fertiliser K applications at given daysDOUBLEARRAYg/(m2 d)---
constantcFERNTABtable with fertiliser N applications at given daysDOUBLEARRAYg/(m2 d)---
constantcFERPTABtable with fertiliser P applications at given daysDOUBLEARRAYg/(m2 d)---
constantcFLTBfraction table of abovre-gr. biomass to leaves as function of DVSDOUBLEARRAY---
constantcFNTRTN-P-K translocations from roots as a fraction of resp. total N-P-K amounts translocated from leaves and stemsDOUBLE1--0.15
constantcFOTBfraction table of abovre-gr. biomass to storage organs as function of DVSDOUBLEARRAY---
constantcFRKXoptimal K concentration as fraction of maximal K concentrationDOUBLE1--1.0
constantcFRNXoptimal N concentration as fraction of maximal N concentrationDOUBLE1--1.0
constantcFRPXoptimal P concentration as fraction of maximal P concentrationDOUBLE1--1.0
constantcFRTBfraction table of total biomass to roots as function of DVSDOUBLEARRAY---
constantcFSTBfraction table of abovre-gr. biomass to stems as function of DVSDOUBLEARRAY---
constantcIOPTindicates optimal (=1), water limited (=2), water and N limited (=3) and water and N, P and K limited run (=4)INT1--0
constantcKDIFTBtable of light extinction factor as function of DVSDOUBLEARRAY1---
constantcKMAXSOmaximal K concentration in storage organsDOUBLEg/g--0.0048
constantcKMINIinitial amount (at crop emergence) of potentially available soil KDOUBLEg/m2--0.0
constantcKMXLVtable with maximal N concentration in leaves as function of DVSDOUBLEARRAYg/g---
constantcKRFTABtable with recovery fractions of fertiliser K applicationsDOUBLEARRAY1---
constantcLAICRCritical leaf area index for overshadowingDOUBLEm2/m2--4.0
constantcLRKRmaximum K concentration in roots as fraction of maximum K concentration in leavesDOUBLE1--0.5
constantcLRNRmaximum N concentration in roots as fraction of maximum N concentration in leavesDOUBLE1--0.5
constantcLRPRmaximum P concentration in roots as fraction of maximum P concentration in leavesDOUBLE1--0.5
constantcLSKRmaximum K concentration in stems as fraction of maximum K concentration in leavesDOUBLE1--0.5
constantcLSNRmaximum N concentration in stems as fraction of maximum N concentration in leavesDOUBLE1--0.5
constantcLSPRmaximum P concentration in stems as fraction of maximum P concentration in leavesDOUBLE1--0.5
constantcNFIXFfraction of crop N uptake by biological fixationDOUBLE1--0.0
constantcNLAIcoefficient for the reduction due to nutrient (N-P-K) stress of the LAI increase (during juvenile phase)DOUBLE1--1.0
constantcNLUEcoefficient for the reduction of RUE due to nutrient (N-P-K) stressDOUBLE1--1.1
constantcNMAXSOmaximal N concentration in storage organsDOUBLEg/g--0.0176
constantcNMINIinitial amount (at crop emergence) of potentially available soil organic NDOUBLEg/m2--0.0
constantcNMXLVtable with maximal N concentration in leaves as function of DVSDOUBLEARRAYg/g---
constantcNPARTcoefficient for N stress-effect on leaf biomass reductionDOUBLE1--1.0
constantcNRFTABtable with recovery fractions of fertiliser N applicationsDOUBLEARRAY1---
constantcNSLAcoefficient for the effect of nutrient (N-P-K) stress on SLA reductionDOUBLE1--0.5
constantcPMAXSOmaximal P concentration in storage organsDOUBLEg/g--0.0026
constantcPMINIinitial amount (at crop emergence) of potentially available soil PDOUBLEg/m2--0.0
constantcPMXLVtable with maximal P concentration in leaves as function of DVSDOUBLEARRAYg/g---
constantcPRFTABtable with recovery fractions of fertiliser P applicationsDOUBLEARRAY1---
constantcRDIInitial rooting depthDOUBLEm--10.0
constantcRDRLmax. rel. death rate of leaves due to water stressDOUBLEd-1--0.05
constantcRDRLTBtable with relative death rate of leaves vs. TMPADOUBLEARRAYd-1---
constantcRDRNSmax. relative death rate of leaves due to nutrient (N-P-K) stressDOUBLEd-1--0.05
constantcRDRRTBtable with relative death rate of roots vs. DVSDOUBLEARRAYd-1---
constantcRDRSHMrel. death rate of leaves due to shading (above LAICR)DOUBLEd-1--0.03
constantcRDRSTBtable with relative death rate of stems vs. DVSDOUBLEARRAYd-1---
constantcRGRLAImaximal relative increase in LAIDOUBLEd-1--0.0
constantcRKFLVresidual K concentration in leavesDOUBLEg/g--0.009
constantcRKFRTresidual K concentration in rootsDOUBLEg/g--0.005
constantcRKFSTresidual K concentration in stemsDOUBLEg/g--0.005
constantcRNFLVresidual N concentration in leavesDOUBLEg/g--0.004
constantcRNFRTresidual N concentration in rootsDOUBLEg/g--0.002
constantcRNFSTresidual N concentration in stemsDOUBLEg/g--0.002
constantcRPFLVresidual P concentration in leavesDOUBLEg/g--5.0E-4
constantcRPFRTresidual P concentration in rootsDOUBLEg/g--3.0E-4
constantcRPFSTresidual P concentration in stemsDOUBLEg/g--3.0E-4
constantcRRIMaximum daily increase in rooting depthDOUBLEm/d--1.2
constantcRTKMINSfraction of soil K coming available per dayDOUBLEd-1--0.0
constantcRTNMINSfraction of soil organic N coming available per dayDOUBLEd-1--0.0
constantcRTPMINSfraction of soil P coming available per dayDOUBLEd-1--0.0
constantcRWRTIinitial change in living root biomassDOUBLEg/(m2 d)--0.0
constantcSLATBtable of specific leaf area as dependent on DVSDOUBLEARRAYg/m2---
constantcScaleFactorFERKScales the y-values of FERKTAB (for sensitivity analysis / calibration)DOUBLE1--1.0
constantcScaleFactorFERNScales the y-values of FERNTAB (for sensitivity analysis / calibration)DOUBLE1--1.0
constantcScaleFactorFERPScales the y-values of FERPTAB (for sensitivity analysis / calibration)DOUBLE1--1.0
constantcScaleFactorKDIFScales the y-values of KDIFTB (for sensitivity analysis / calibration)DOUBLE1--1.0
constantcScaleFactorSLAScales the y-values of SLATB (for sensitivity analysis / calibration)DOUBLE1--1.0
constantcTBASElower threshold temperature for LAI increaseDOUBLE°C--0.0
constantcTCKTtime constant for K translocation to storage organsDOUBLEd--10.0
constantcTCNTtime constant for N translocation to storage organsDOUBLEd--10.0
constantcTCPTtime constant for P translocation to storage organsDOUBLEd--10.0
constantcTDWIInitial total crop dry weightDOUBLEg/m2--210.0
inputiAVRADDaily total irradiationDOUBLEJ/(m2 d)--0.0
inputiDVSinitial development stage of crop (from 0 to 2)DOUBLE1--0.0
inputiDoHarvestharvestingBOOLEAN1--false
inputiDoSowsowingBOOLEAN1--false
inputiEMERGhas emergedBOOLEAN1--false
inputiIDEMERGDay of emergenceINT1--0
inputiRDMmaximal rooting depthDOUBLEm--0.0
inputiRTMCOoverall correction factor for RUE in dependence of both CO2 concentration and non-optimal daytime and minimal temperaturesDOUBLE1--0.0
inputiRUEradiation use efficiencyDOUBLEg/MJ--0.0
inputiTMAXmaximal air temperature during day (output of routine WEATHR)DOUBLE°C--0.0
inputiTMINminimal air temperature during day (output of routine WEATHR)DOUBLE°C--0.0
inputiTRANRFwater stress reduction factorDOUBLE1--1.0
statesAKLVamount of K in living leavesDOUBLEg/m2--0.0
statesAKRTamount of K in living rootsDOUBLEg/m2--0.0
statesAKSOamount of K in storage organsDOUBLEg/m2--0.0
statesAKSTamount of K in living stemsDOUBLEg/m2--0.0
statesANLVamount of N in living leavesDOUBLEg/m2--0.0
statesANRTamount of N in living rootsDOUBLEg/m2--0.0
statesANSOamount of N in storage organsDOUBLEg/m2--0.0
statesANSTamount of N in living stemsDOUBLEg/m2--0.0
statesAPLVamount of P in living leavesDOUBLEg/m2--0.0
statesAPRTamount of P in living rootsDOUBLEg/m2--0.0
statesAPSOamount of P in storage organsDOUBLEg/m2--0.0
statesAPSTamount of P in living stemsDOUBLEg/m2--0.0
statesGTSUMtotal biomass of the cropDOUBLEg/m2--0.0
statesKLIVTamount of K in living crop organsDOUBLEg/m2--0.0
statesKLOSSLamount of K in dead leavesDOUBLEg/m2--0.0
statesKLOSSRamount of K in dead rootsDOUBLEg/m2--0.0
statesKLOSSSamount of K in dead stemsDOUBLEg/m2--0.0
statesKLOSSTamount of K in dead crop organsDOUBLEg/m2--0.0
statesKMINamount of K potentially available from the soilDOUBLEg/m2--0.0
statesKMINTtotal K directly available from soil and fertiliserDOUBLEg/m2--0.0
statesKROOTtotal K in living and dead rootsDOUBLEg/m2--0.0
statesKUPTTtotal K uptake by crop from soilDOUBLEg/m2--0.0
statesLAIleaf area index (leaf area per soil surface)DOUBLEm2/m2--0.0
statesNFIXTTtotal N uptake by crop from biological fixationDOUBLEg/m2--0.0
statesNLIVTamount of N in living crop organsDOUBLEg/m2--0.0
statesNLOSSLamount of N in dead leavesDOUBLEg/m2--0.0
statesNLOSSRamount of N in dead rootsDOUBLEg/m2--0.0
statesNLOSSSamount of N in dead stemsDOUBLEg/m2--0.0
statesNLOSSTamount of N in dead crop organsDOUBLEg/m2--0.0
statesNMINorganic N potentially available by mineralization from the soil kg N ha-1DOUBLEg/m2--0.0
statesNMINTtotal mineral N directly available from soil and fertiliserDOUBLEg/m2--0.0
statesNROOTtotal N in living and dead rootsDOUBLEg/m2--0.0
statesNUPTTtotal N uptake by crop from soilDOUBLEg/m2--0.0
statesPLIVTamount of P in living crop organsDOUBLEg/m2--0.0
statesPLOSSLamount of P in dead leavesDOUBLEg/m2--0.0
statesPLOSSRamount of P in dead rootsDOUBLEg/m2--0.0
statesPLOSSSamount of P in dead stemsDOUBLEg/m2--0.0
statesPLOSSTamount of P in dead crop organsDOUBLEg/m2--0.0
statesPMINP potentially available from the soilDOUBLEg/m2--0.0
statesPMINTtotal P directly available from soil and fertiliserDOUBLEg/m2--0.0
statesPROOTtotal P in living and dead rootsDOUBLEg/m2--0.0
statesPUPTTtotal P uptake by crop from soilDOUBLEg/m2--0.0
statesRDactual rooting depthDOUBLEm--0.0
statesTAGBtotal above-ground biomassDOUBLEg/m2--0.0
statesTAGBG-DOUBLEg/m2--0.0
statesTPARtotal photosynthetically active radiationDOUBLEMJ/m2--0.0
statesTPARINTtotal intercepted radiation (PAR)DOUBLEMJ/m2--0.0
statesWLVweight of leavesDOUBLEg/m2--0.0
statesWLVDweight of dead leavesDOUBLEg/m2--0.0
statesWLVGweight of living leavesDOUBLEg/m2--0.0
statesWRTweight of rootsDOUBLEg/m2--0.0
statesWRTDweight of deat rootsDOUBLEg/m2--0.0
statesWSOweight of storage organsDOUBLEg/m2--0.0
statesWSTweight of stemsDOUBLEg/m2--0.0
statesWSTDweight of dead stemsDOUBLEg/m2--0.0
raterDLVdecrease in leaf mass by senescenceDOUBLEg/(m2 d)--0.0
raterDRRTdeat root rateDOUBLEg/(m2 d)--0.0
raterDRSTdead stem rateDOUBLEg/(m2 d)--0.0
raterGRTdaily increase in total biomass of the cropDOUBLEg/(m2 d)--0.0
raterKUPTRdaily K uptake rate by the cropDOUBLEg/(m2 d)--0.0
raterNFIXTRN uptake rate by crop from biological fixationDOUBLEg/(m2 d)--0.0
raterNUPTRdaily N uptake rate by the cropDOUBLEg/(m2 d)--0.0
raterPARdaily amount of photosynthetically active radiationDOUBLEMJ/(m2 d)--0.0
raterPARINT(or PARAB) daily amount of PAR as intercepted by the crop canopyDOUBLEMJ/(m2 d)--0.0
raterPUPTRdaily P uptake rate by the cropDOUBLEg/(m2 d)--0.0
raterRKLDLVK losses due to death of leavesDOUBLEg/(m2 d)--0.0
raterRKLDRTK losses due to death of rootsDOUBLEg/(m2 d)--0.0
raterRKLDSTK losses due to death of stemsDOUBLEg/(m2 d)--0.0
raterRKLVrate of change of K amount in the leavesDOUBLEg/(m2 d)--0.0
raterRKMINSdepletion (thus negative value) of the available amount of soil KDOUBLEg/(m2 d)--0.0
raterRKMINTchange in total directly available K in soilDOUBLEg/(m2 d)--0.0
raterRKRTrate of change of K amount in the rootsDOUBLEg/(m2 d)--0.0
raterRKSOrate of change of K amount in the storage organsDOUBLEg/(m2 d)--0.0
raterRKSTrate of change of K amount in the stemsDOUBLEg/(m2 d)--0.0
raterRLAIchange in leaf area indexDOUBLEd-1--0.0
raterRNLDLVN losses due to death of leavesDOUBLEg/(m2 d)--0.0
raterRNLDRTN losses due to death of rootsDOUBLEg/(m2 d)--0.0
raterRNLDSTN losses due to death of stemsDOUBLEg/(m2 d)--0.0
raterRNLVrate of change of N amount in the leavesDOUBLEg/(m2 d)--0.0
raterRNMINSdepletion (thus negative value)/mineralization of the available amount of soil organic NDOUBLEg/(m2 d)--0.0
raterRNMINTchange in total inorganic directly available N in soilDOUBLEg/(m2 d)--0.0
raterRNRTrate of change of N amount in the rootsDOUBLEJ/(m2 d)--0.0
raterRNSOactual N translocation to storage organsDOUBLEg/(m2 d)--0.0
raterRNSTrate of change of N amount in the stemsDOUBLEg/(m2 d)--0.0
raterRPLDLVP losses due to death of leavesDOUBLEg/(m2 d)--0.0
raterRPLDRTP losses due to death of rootsDOUBLEg/(m2 d)--0.0
raterRPLDSTP losses due to death of stemsDOUBLEg/(m2 d)--0.0
raterRPLVrate of change of P amount in the leavesDOUBLEg/(m2 d)--0.0
raterRPMINSdepletion (thus negative value) of the available amount of soil PDOUBLEg/(m2 d)--0.0
raterRPMINTchange in total directly available P in soilDOUBLEg/(m2 d)--0.0
raterRPRTrate of change of P amount in the rootsDOUBLEg/(m2 d)--0.0
raterRPSOactual P translocation to storage organsDOUBLEg/(m2 d)--0.0
raterRPSTrate of change of P amount in the stemsDOUBLEg/(m2 d)--0.0
raterRRroot growth rateDOUBLEm/d--0.0
raterRWLVGchange in living leaf biomassDOUBLEg/(m2 d)--0.0
raterRWRTchange in living root biomassDOUBLEg/(m2 d)--0.0
raterRWSOchange in storage organ biomassDOUBLEg/(m2 d)--0.0
raterRWSTchange in living stem biomassDOUBLEg/(m2 d)--0.0
outFINT fractional light interception DOUBLE--0.0
outKNI-DOUBLE1--1.0
outLAII-DOUBLEm2/m2--0.0
outNNI-DOUBLE1--1.0
outNPKI-DOUBLE1--1.0
outPNI-DOUBLE1--1.0
outWithCropcrop is presentBOOLEAN1--false



public class Lintul5 extends net.simplace.simulation.model.FWSimComponent {
// Public Constructors
public Lintul5(String aName, HashMap aFieldMap, HashMap aInputMap, Element
aSimComponentElement, FWSimVarMap aVarMap, int aOrderNumber);
public Lintul5();


// Public Instance Methods
public HashMap createVariables(); // Defines
net.simplace.simulation.model.FWSimComponent


Create the FWSimVariables as interface for this SimComponent

// Protected Instance Methods
protected void init(); // Defines
net.simplace.simulation.model.FWSimComponent


initializes the fields by getting input and output FWSimVariables from VarMap
protected void initValues();

protected void resetOnHarvest();

protected void process(); // Defines
net.simplace.simulation.model.FWSimComponent


process the algorithm and write the results back to VarMap
protected FWSimComponent clone(FWSimVarMap aVarMap);
// Defines net.simplace.simulation.model.FWSimComponent


creates a clone from this SimComponent for use in other threads


}



Hierarchy: java.lang.Object - net.simplace.simulation.model.FWSimComponent (net.simplace.simulation.util.FWSimFieldContainer) - Lintul5